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1. Introduction

\
~~~ There are several indica tions pointing to an intimate re-

lationship between the second law of thermodynamics and “stabili ty”.

Most notably, the work of Ericksen [1] on thermoelasticity and

subsequent developments by Coleman and Dill [2] and Gurtin [31

have demonstrated that the Clausius-Duhem inequality induces

Liapunov stability of equilibrium processes. ~ !Ierc I attempt to

establish a different connection between stability and the second law ,

in that “stability” will be interpreted as continuous dependence

of thermodynamic processes upon initial state and supply terms .

The ideas will be presented wi thin the context of thermo-

elastici ty theory, without heat conduction . The hyperbolic charac ter

of the field equations causes the breakdown of smooth solutions and

the development of shock waves so the class of smooth functions is far

too narrow to encompass all processes of physical interest. The

natural framework is the class of proper processes , characterized

by the property that velocity, deformation gradien t, specific entropy ,

s~~ ss, temperature and internal energy are functions of bounded

variation..in the sense of Tone1li~Cesari (*) The balance laws ,

in integral as well as in local form , are meaning ful in the class

of proper processes and the classical geometric theot,r of wave

propaga tion can be transplanted into this class. One expects that

(*) that is , measurable func tions whose first deriva tives are Borel
measur es. This i s essentiall y the broades t function class in
which the Gauss-Green theorem holds. There is an analogy between
the geometric structures of functions of bounded variation and
func tions that are piecewise smooth. For a survey see (41
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existence of solutions to the field equations will eventually be

established within the class of proper processes but so far this

has only been accomplished in the one-dimensional case [51

The interpretation of the role of the second law of thermo-

dynamics in the theory of proper processes poses an interesting

problem . The idea of restricting constitutive relations so that

the Clausius-Duhem inequality be automaticall y satisfied by smooth

processes originated in the work of Coleman and Noll [61 and has

by now become standard practice in continuum thermomechanics. On

the other hand , within the class of processes with shock waves , the

Clausius-Duhem inequality has traditionally been viewed as an ad-

missibility criterion. It turns out that this criterion generally

rules out some but not all extraneous processes so that one must either

impose chock admissibility restrictions [71 or else strengthen the

second law [81 , in order to single out those processes that are

physically relevant.

Despite the above remarks , it will be shown here that , when-

ever they exist , smooth processes are stable within the class of

(not necessarily smooth) proper processes that satisfy the Clausius-

Duhem inequality. In other words , for as long as one is dealing

with smooth processes , the second law in its traditional form is a

satisfactory admissibility criterion .

The above result is established under certain assumptions

on material response , relating to convexity of internal energy.

With the exception of one-dimensiona l bodies , global convexity of

the internal energy function is contrary to experience (it is

incompatible , in particular , with the principle of frame indifference) .

lb -
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Even so, internal energy will in general be locally convex on a

certain region in state space. In Section 4 we prove uniqueness and

stability for smooth processes residing in the convexity region of

internal energy . For the case where the body is smooth and bounded and

the motion of its boundary is prescribed , stability is established ,

in Section 5, under the weaker assumption that the smooth process

resides in the strong ellipticity region.

The general strategy of the proof was insp ired by the

important paper [9] of DiPerna on uniqueness of solutions to the

initial value problem for quasilinear hyperbolic systems . The heart

of the proof is an inequality, derived in Section 3, which estimates

the evolution in time of the “distance” between the states of two

processes originating at neighboring states. The time rate of

increase of this distance can be controlled , with the help of the

Clausius-Duhem inequality, provided that at least one of the processes

is smooth and resides in the convexity (or the strong ellipticity)

region of internal energy.

‘
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2. Adiabatic Processes in Thermoelastic Materials

We consider a thermoelastic body with reference

configuration .
~~~~ in R’1 (n = 1,2 or 3). The reference mass

density p (X), defined on .~~~~~, is smooth and strictly positive ,

(2.1) P(X) > p
0 > 0, X c

A motion x = x(X,t) determines the velocity field v = * and

the deformation gradient field F = grad~x. The internal energy E ,

the Piola-Kirchhoff stress T and the temperature 0 are

d~~.ermined by the deformation gradient F and the specific entropy

Ti via constitutive relations

(2.2) e = £*(F n;X) T = T*(F n X )  0 = 0*(F fl X)

where c*,T* and 0* are smooth functions defined for F in the

set M~ of n x n matrices with positive determinant , Ti in R

and X in ~~J *)  We also require that

(2.3) 0*(F,n;x) > 0, F C M
4
, Ti C R , X C

We shall be assuming that the material is a non-conductor of heat so

that heat flux and entropy flux vanish.

( W )  * *In particular , we assume that the partial derivatives of c ,O
and 1*, at any fixed F M~ and n c R, are bounded functions
of X on ~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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By a proper thermod ynamic process we mean fields (x,ri)(X,t)

such that (y,~ ,fl)(~~,t) are functions of locally bounded variation ,

in the sense of Tonelli-Cesari , satisfying the balance laws of

momentum and energy, viz.,

(2.4) P~ T
1 

= 
~~~~~ 

+ Pb 1,

(2.5) p (c+ ~~
- v~v1) 

= (Ti~
vj)a + pb .v. +

where b(X ,t) is the body force and r(X,t) is the energy supply.

The process will be called admissible if it also satisfies the

Clausius-Duhem inequality

(2.6) fi - > 0.
0~~

The reader should keep in mind that for the class of proper processes

(2.4)-(2.6) only hold in the sense of measures (or distributions)

and thus one cannot simplify (2.5) in the standard fashion , since

the usual product differentiation rule does not apply to products

of functions of bounded variation.

A process (i,i~)(X,t) will be called smooth if the functions

(~ ,i~,~ )(X,t) are Lipschitz continuous , uniformly on bounded subsets

of their domain. Thus a smooth process may contain weak waves but

not shock waves. For smooth processes , one may write the balance

laws in reduced form ,

(2.7) p
~ . . ~~~~ +

_______ 

_________________________________ ________ ___________________ __________________ __________________ I
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(2.8) P~ = + p~~.

As it is known , the standard requirement that every smooth process

be admissible will be satisfied if and only if

(2.9) T * = P , 0* =

Indeed , upon using (2.9), (2.8) yields

(2.10) ~ -4 =  o ,
0

which shows that the Clausius-Duhem inequality is automaticall y

satisfied by smooth processes , as an equality.

_____ 

_____________________ 
___
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3. The E v o l u t i o n a r y  I n e q u a l i t y

We establish here the estimate that will be the basis of our

stabi l i ty anal ys is . We def ine

(3. 1) H*(v ,F,n;~7,r,~~;X) = .

~~~ 
P(v

~
-V
~

) ( v
1-V~

) + p 6 * (F , n ; X )

- pc *(F , n ; X )  - T
~~ (V,

ii;X)(Fiu -Tja) - ~~~~~~~~~~~~~~~~~

( 3 . 2 )  G~~(v , F , n ;~~,F ,~~;X)  = - ( T ~~~(F , n ; X )  - T~~~(r ,~ i ; X ) ) ( v ~
-
~

F1) .

On account of (2.9), H* and G* are of quadratic order in

Consider now a smooth process (~ Ji)(X,t), with supply terms

(~ ,~F)(X,t), and let (x,n)(X,t) be any admissible process with

supply terms (b,r)(X,t). We set

(3.3) H(X,t) = H* (v (X ,t),F(X ,t),n(X,t) ; v ( X ,t),P~(X ,t),i9(X,t ) ; X ) ,

(3.4) G(X,t) = G*(v(X t) F(X t) n(X t);V(X t) P~(X t) *ii(X t);X)

We shall be viewing H as a measure of the “distance~’ between the

two processes. In order to see how H evolves in time , we compute

below H + divxG , keeping in mind that the usual product differentiation

rule applies (in the sense of measures) to the product of a Lipschitz

continuous function with a function of bounded variation. We have

+.. .~ 4 .~ ~~~~ ~~
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(3.5) II + G~~~ 
= p (L + v.v .) - PV .~~ . - p

~~~~. +

- r.~(F 1~-r1~) - Ti uFi a + - PO ( n - f l )

- Pe(~1- ’~) 
- (T 1~ v 1)~~ 

+ (T1~~-T 1~ )i~1~ 
+

+ v.T. + ~7.T. - ~ .T.i. i(~ ,U 1 1U ,U

Observing that v. = F. , ~~~~. 
= F. and using the balance laws

1~ 1 ,(~ 1C~

(2.4), (2.5), (2.7), (2.8), we may rewrite (3.5) in the form

(3.6) H + ~~~~ = P(v
1~~ 1

) ( b ~ -b 1) 
+ P (r-i) -

+ 
~~~~~~~~~~~~ 

- P0(~~-n) -

= P(v.-v~)(b .-b .) + P(r-~~) - 

~~~~~ 
~~~~~~~~~ (~~~~~~~~~~

-
~~~~

‘

~~~~~~)

*
- 

~11 i~(F.~~-P~~) + F.
~~

(Tia-ri a) - P 
~ 

n-~ )

— — .
- 

~r 
11(11-T i ) - P0( 11- n) .

By v i r tue of ( 2 .9) ,

* ~T~
’ aT~ ai~( 3 7) — 1~ ____ ____

3F j~ 
— 

‘ ~~~~ 
— 

3F .8

so that (3.6) yields

L1 ~~L
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( 3 . 8 )  11 + ~~~~~~~~ = P(v
~

-v
~

) ( b
~
-b 1) 

+ P ( r - i ~)

* *

+ - - 

~~f 
(F~~~~~ -P ~~~~~) 

- (n-fl) )

+ pTj{0 - W - ~~~~~ ~~~~~~~~ 
- ~~ -~~-— (n-~i)}

- p~ ( 0 -W) -

From the Clausius-Duhem inequality (2.6) and (2.10), we obtain

(3 .9)  P( r- r )  - pi~(0~ W) - PW (~ -i~) < .~ !. (0 -W ) (r-f) - 
P1 (@11~)

2
- ow

hence ( 3.8) tak es the form

(3.10)  II + G~~ a ~ P(v ~
-v

~
) (b~~-E1) + .~ .. (0 - W)  ( r -i )  - .fi?i

+ Pia (T iu - Tia - 

~~~~ 
(F~~~-F~~ ) - 

~~~~ 
(n-il) )

+ ~~1- - - ~~~~~ (F~ 8-F~8) - 

~~~~~ 

( r i - i l ) ) .

Inequality (3.10) will be the starting point of our stability

analysis. The crucial observation is that its right 1~and side is of

quadratic order in ~~~~~~~~~~~~~~~~~~ so that one may establish

continuous dependence of processes upon initial data and supp ly terms

by applying Gronwall type inequalities , provided that H be positive

definite in an appropriate sense. This program will be implemented

in the following two sections.
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4. Stability of Smooth Processes in the Convexity Region

of In ternal Energy

In th is sec tio n we shal l  be dea l ing  w ith pai rs  of processes

tha t render U (X ,t) poin twise posi tive def in i te . On accoun t of

(3.1) and (2.9), the s ign of I1~ is depend en t upon the conv exi ty

p rope r t i e s  of the  func tion C~~

*For fixed X C .~~~~~, we le t .J (F ,n;X) denote the Hessian

matrix of E* (F ,fl;X). We will say tha t a pr ocess (x ,ri)(X,t)

res ides  in the convex i ty  reg ion  of in ternal  energy if

J*(~
*(~~,t),il(~~,t);~~) is uniformly posi tive definite on the closure

of the domain of the pro cess. By virtue of (2.9), J~ is the

Jacobian matrix of the transformation (F,n) i~ (p~~T,0 ) .  Thus ,

by Sylv ester ’s theorem , J*(P~(X ,t),il(X ,t);X) will be pos i t i ve

d e f i n i t e  if and only if

131 ( F ( X ,t) ,n(X,t) ;X) I
(4 . 1)  L~ 

pos i t ive  d e f i n i t e

( 4 . 2 )  det J * (~~(X , t ) , il~X , t ) ; X )  > 0.

In order to see the  the rmodynamic  i n t e r p r e t a t i o n  of ( &2 ) ,  we

observe  t h a t  when J~ is nons ingu l a r  at a point  one may inver t

locally the transformation (~ ,n) ~÷ (p 1T , 0) to get

* -l * -lF = F (p T , 0 ;X) , n = r~ (p T,ri;X) and

*

( 4 . 3 )  = P~~~(det  J *)~~lde t [~~~~
}

_ _ _ _ _  - -u--- — -— —
* ~ w~~~~~~ - - ~~r 

- 
~~~~~- ~~~~~~~~~~~~~~~~~~~
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It follows that (4.1), (4..) are equivalent to the foll~ wing two

conditions (in the notation of classical thermod ynamic s) :

( 4 . 4 )  ~-j~ positive definite ,
fl

1 ~( 4 .5 )  
~
-
~~-j 

> 0.

It is easil y seen that (4.4), (4.5) are in turn equivalent to

~ T( 4 . 6 )  -
~~

-
~~~ posi t ive def i n i te ,

(4.7) 
{
~~~ F 

> 0.

The relevance of (4.5), (4.7) to thermodynamic stability was first

pointed out by Gibbs [10] . It would be appropriate to impose these

condi tions on any reg ion in sta te space tha t doe s no t con tain

cr i tical poin ts a t which  the ma terial  und er goes p hase transi ti ons .

On the contrary , (4.4) and (4.6) are quite restrictive. These

condi t ions may be g lob al ly satisfied for one dimensional bodies but

are incompa t ib le , in the multidimensional cage , wi th the p r i n c i p l e

of ma ter ia l  f rame in d i f f e r ence on a large por tion of ~5tate space

tha t in c ludes , in par t icu lar , na tural  sta tes. The theory of ela st ic

stabi lit y ( e .g .  [11] ) e lucida tes the role of ( 4 . 4 ) , (4 .6) and makes

it plaus ib le  tha t these condi t ions wi l l  be sa t isf ied on some re g ion

in state space where  stra ins  are moderate  and str esses are pre-

domina tely ten sil e.

- -I-
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We now state two stability results , the first one for the

mixed ini t ial -b ound ary value problem and the second for  the pure

initial value problem .

Theorem 4.1. Assume that ~ is bounded and has f in i te per ime ter

[4]. Let (x,n)(X,t) be a smooth process defined on ~~ x [0 ,t0
],

res id in g in the convex ity re g ion of in te rna l en er gy ,  with supply

terms (b ,i)(X,t) C L~ (~~ 
X [0 ,t0]). Then there are positive

cons tan ts S ,c~,M ,N w ith the f ol lowing pro per ty: If (x ,n)(X ,t)

is any adm iss ib le  pr oces s def ined  on -~~~~ x [0 ,t0) , w ith suppl y terms
1 2 (*)(b ,r ) ( . ,t) c L ([0,t0}; L (

~~
) ) ,  and such tha t

(4.8) IF(X,t) - F(X,t)J + Jn(X .t) - il(X,t)(  < ~5 , (X ,t) C x [0 , t
0

1 ,

(4.9) (v-~ ).(t-T) < 0, on

then we have , for any s C (0,t0
]

(4.10) H (v-~~,F - F ,n-~ ) (. ,s) I I  2L (
~~

)

< Me afl I (v -~~, F -~~,n - i l) ~~~~~ 2L ( .~~

+ Ne~
5 f5 (b -~~, r -~~) ( ~~, t ) I I  2 d t .

0 L ( ~~~)

(*) In Equation (4.9) ~r , t deno te the stress vec tors .

— w_ ,_—
~&I____ _ _ _—_  -—— — -  -— 

~~~~~~~~~~~~~~~~~~~~ 
---

- - ~~~~~
- _,



13

Theorem 4.2. Assume that ~~ = Rn . Let  (~~,~~) ( X , t )  be a smooth

process  de f ined  on -~~~~ x [0,t0], residing in the convexity region

of in te rna l  energy,  with supply terms (i~,i)(X,t) C ~~~~~~~ 
x [0 ,t~ ])

and such that  (r ,i l) ( X , t) is bounded on ~~ X [0,t0]. Then there

are posi t ive cons tan ts 5 ,k,a,M,N wi th the fo l lowing  pro per ty:  If

(x ,n)(X ,t) is any adm iss ible  process def ined on ~~~~~x [o ,~ 0J , wi th

suppl y terms (b,r ) ( ~~,t) C L
1([O ,t0] ; L~ oc(~~

) )
~ 

and such tha t

(4 .11)  I F ( X ,t) - T~(X ,t)l + I n (~,t) 
- il(x,t)I < S , (X ,t) C ~~ X [Q~~0J~

then we have f r  every a > 0, s C [0 ,t0]

(4.12) I I  (v-~,F-~ ,n-il)(.,s) ft 2L (IXI<a)

< Me I I v - ~ ,F-r ,rl-i~~~,0 ) I I  2L (IX ! <a+ks)

as r S
+ Ne (b-E~,r-r) (. ,t) I I  2 dt.

L (IX I<a+k(s-t) )

From the above proposi tions one draws immedia tely the fo l lowing

Corollary 4.1. Let ~~~~, (~~,il)(X,t) and (x ,ri)(X ,t) be as in

Theorem 4.1 or as in Theorem 4.2. Assume that the corresponding

suppl y terms (b~,i ) ( X ,t ) and (b ,r)(X,t) coincide on .~~~~ X [o,~ 0]

and that both processes originate from the same state , that is ,

( 4 . 1 3 )  x ( X , 0) = i(X ,0), v(X ,0) = ~7(X,0),. X C .~~~~.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~
-

~~~~-
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Then (i,il)(X,t) and (x ,fl)(X,t ) coin c id e on ~ x [0 ,t0].

The ab ove uni queness resul t is onl y local since the two

processes  are r e s t r i c t e d  a p r i o r i  by ( 4 . 8 )  or ( 4 . 1 1 ) .  Rough ly

speaking , the Cor o l l a ry  sta tes tha t the only way tha t an admiss ib l e

process may b i f u r c a te ou t of a smoo th process , at an instant t1,

is by the  spontaneous  gene ra t ion  at t 1 of a shock wave of large

(> 6) amplitude. In the one dimensional case it is known [12] that

t h i s  is imposs ib le , i . e . ,  shock wave s or ig ina t ing a t a smoo th sta te

start our with “zero ” ampli tud e and ar e then gradu all y amplified .

One would need a s i m i l a r  proper ty  for  the mul tidimen sion al case in

order to deduce global uniqueness from Corollary 4. 1 bu t a proof

does not seem poss ib le  at the present  s tage of development  of the

theory .

F r  the proof of Theorems 4. 1 and 4. 2 we shall  need the

fo l lowing Gronwal l  type inequal i ty .

Lemma 4.1. Assume that the nonnegative functions y(t) C L~~[0 , s]
1 .and g(t) C L [0,s] satisfy the inequality

(4.14) y2(o) < M2y2(0) + f [ 2ay 2 ( t)  + 2N~~~t ) y ( t ) ] d t , I~~ C [0,s],

where a ,M ,N are nonnega tive con stan ts. Then

(4.15) y(s) < Me~~ y ( 0 )  + Ne as 
~~g ( t ) d t .

The proof of the above lemma is straightforward and in any

case a more general result (Lemma 5.1) will be established in Section 5.
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Proof of Theorem 4.1. Since (i,il)(X,t) resides in the convex i ty

region of in te rna l  energy ,  there  exis t , on account of ( 2 . 9 ) ,

pos i t i ve  constants  6 , A such that , whenever ( 4 . 8 )  holds ,

( 4 . 1 6 )  C * ( F ( X , t ) , f l ( X , t ) ; X )  -

- P ’T ia (P(x , t ) J i (x , t ) ; X ) [ F ia (X , t) -

* _ _

- 0 (F(X ,t ) , n(X ,t ) ;X ) [ n(X ,t)  - r i (X , t ) ]

> A (~ F (X ,t) - 

~(X ,t)I 2 
+ In (~,t) 

- ii(X ,t ) 1 2 ),

for  every (X , t) C .~~~~ ~~

We now fix s C [0 , t 0 ] ,  we integrate (3.10) over .~~~ X

0 C [0,s] , we apply the Gauss-Green theorem and we use (4.9), (4.16)

and the observation that the right-hand side of (3.10) is of

quadratic order in (v-~~,F-~~,~~-T~,b -b ,r-i ) thus arriving at an

estimate of the form (4.14) with

(4 .17 )  y( t) = I I  (v-~~,F-~~, n-il) (
~ ,t) I I 2-L (

~~~
)

(4 .18)  g ( t )  = I (b-E ,r-~ ) (. ,t) I I  2L (~~~~~~~)

An app lication of Lemma 4.1 completes the proof.

Proof of Theorem 4.2. As in the proof of Theorem 4.1 there are

positive constants 6,X such that (4.16) is satisfied for all

-4 —~~~~ — —— — w -  
~~~~

a - .— — —.
~~~~~~~ ~~
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(X ,t) C ~ [0,t0) , whenever (4.11) holds. Consequently , since

is o f quadra t ic ord er in  (v-~ ,F-V ,rI-il), one may de te r m i n e  a

sufficiently large positive constant k with the property

x
( 4 . 19) k H( X ,t) - G ( X , t )  -1j1- > 0 , (X , t )  C ~ x [0 , t 0 ] .

We no w f i x  s C [0 ,t0] , a > 0, and for  each a i [0 ,s] we integrate

(3.10) over the f r u s t u m  f (X ,tfl ~ L [0,oJ , 
~~ 

< a + k ( s - t f l .

Appl ying the Gauss-Green theorem and using (4.19), (4.16) we arrive ,

as in the proof of Theorem 4.1 , to an est ima te of the f orm ( 4 . 14)

wi th

(4.20) y(t) = H (v-~~,F-~~,n-il) (. ,t) I I  2— 

L (!Xka+k(s-t))

( 4 . 2 1 )  g ( t )  = I I  ( b - E ,r-1) (. , t )  H 2L (IXI<a+k (s-t))

so tha t  Lemma 4 .1  y i e ld s  ( 4 . 1 2 ) .  The proof of the theorem is

comp lete.

From the proof of Theorems 4.1 and 4.2 it becomes clear that

in the one-dimensional case , where the in ternal ener gy is glob a l ly

convex , one may selec t 6 , in (4.8) or (4.lrj , arbi tr a r i l y  la rge

so that the stability and uniqueness results become 5jobal. As a

matter of fact , in the one-dimensional case and un~er some

add itional assumptions (most notably genuine nonlinearity)

DiPerna [9] has established uniqueness of piecewise smooth processes

in the class of proper admissible processes. DiPerna ’s ana lys i s

relies on a number of novel ideas and the prob1~m of ex tending i t

to the multidimensional case is still open.

—4- 

~~~~ 
- 

~~~~~~ 
‘
:~~
“i 

__
__
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5. S t a b i l i t y  of Smooth Processes in the Strong

Ell ipt icity R e g i o n

The object of the  restrictive convexity assumption , in

Sec t ion  4 , was  to ensu re  t h a t  I L ( X ,t) be pointw ise positive

d e f i n i t e .  In  ~cv i e l ~’ing  t h e  p z o o i  of Theor em 4.1 , 1~ow~ vc~~, it

becomes cle~,i~ that definiteness of J H (X , t ) d X  would su f f i c e  for

stability. We prove here that , when ever th e bod y is smooth and

the motion of its boundary is prescribed , stability is induced by

a mere strong elli pticity condition.

We wi l l say t h a t  a process (~~, i l ) ( X , t) res ides  in the strong

ellipticity reg ion if there is a positive constant v with the

property that for any vectors ç , ~ C R
n
, every ~ C R and all

(X ,t) in the domain of the process

2 * _  — 2 * _  —3 ~. ( F ( X ,t),n (X,t);X) 3 ~ ( F ( X ,t),n (X ,t ) ; X )
( 5 .1) - 

~~~~~~~~~ 
+ 

3F
~~

3n

2 * _  —

3 ~ ( F ( X ,t),n (X,t);x) 2 2 2 2+ ___ 
~~~

_
~~~

___ ~ > v (~~~J R I + 
~ ) .

an

Strong elli ptic ity in nonlinear elasticity has been studied

in connec tion to wave progagation (e.g. [131) as wel l  as to

ex i s tence  of e q u i l i b r i u m  c o n f i g u r a t i o n s  [ 1 4 1 .  As an a s sumpt ion

it is weaker  than  convex i ty  of the i n t e r n a l  energy and , in p a r t i c u l a r ,

it is not incompatible with frame indifferenc e at a natural state.

For a discussion on the extent of the strong ellipt ic .i ty region

in two-dimensional , homogeneous , isotropi c , hyp erelastic bodies ,

see [151 . See also [161 for relevant illuminating remarks.

_ _
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We now state the stability result:

Theor em 5 . 1.  Assume t h a t  ~~ i s  smooth and bounde d .  Let

(i,il) (X , t )  he a smoo th  process defined on ~~ x [0 , t 0
] , residing

in the strong e l lipticity region , with supply terms

(E ,i ) ( X , t )  C L ( . ~~ 
x [0 ,t01). 

Then there are  positive constants

~~~~~~~~ with the following property : if  (x , ri) ( X , t )  is any

admissible process defined on ~~ x [O ,t0], with supp ly  t erms

(b,r)(X ,t) £ L~~([0 ,t0] ;L
2
(~~ )) and such that

( 5 . 2 )  F(X ,t) - r(x,t)I + n (X ,t) - il(X,t)j < 5 (X ,t) ~ 
X [0,t0] ,

(5 . 3) x(X ,t) = ~ (X ,t ) ,  X C 3.~~~, t C

then we have , for any s C [0 , t 0 ]

(5.4) H (y , ~ -~ ,n-n ) (. , s) 2L (
~~~

)

< M exp(as+~ s2)J~ (v-~~~-V,n-il) (~ ~°) I I  2L (
~~~

)

+ N exp(us+1~s
2) f I !(b-E ,r-i)(~ ,t)l ‘~~2 

dt.
0 L ( . ~~)

From the above propos it ion one draws the f o l l o w i n g  uniquene ss

re sul t :

~

- 

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
1
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Corol la ry  5.1. Let ~~~~~, (~~, Ti) ( X , t )  and (x , r i ) ( X , t )  be as in

Theore~t 5.1. Assume that the corresponding suppl y t e r m s  (b r ) ( X , t )

and (b ,r)(X ,t) co in c id e on ~ [0,t01 and that both processes

originate from the same state , i.e.,

( 5 . 5 )  x ( X , 0 )  = k (X ,0 ) ,  v ( X , O) = V(X ,O), X C Q .

Th en (i ,~~) (X , t )  a n d  (x , n) ( X , t )  c o i n c i d e  on ‘~~~ ~ [0 ,t
0
)

For the proof of Theorem 5.1  we w i l l  employ the  following

Gronwall type inequality.

Lemma 5.1. Assume that the nonnegative functions y(t) £ L ’[O ,sJ

and g ( t )  ~ L ’[O , s] s a t i s f y the inequality

( 5 . 6 )  y 2 (a) < M2y2(0) + 
J 0

2 4 ~ 0)y 2 ( t)  + 2Ng(t)y (t)]dt , o C [O ,s],

w i t h  ~ ,y , M , N n o n n e g a t i v e  c o n s t a n t s .  Then

2 2 (~
(5.7) y(s) < M exp(cts+~ s )y(0) + N exp(as+~ s ) I g ( t ) d t ,

J o

where a = y + 13/i.

Proof. We define a nonnegative function z(o) by

(5. 8) z 2 (a) = M 2y2(0) + J [(2y+413a)y 2(t) + 2 N g ( t ) y ( t ) l d t , a ~ (0 , s] ,
0

and we note that

_ _ _  -~~~ - ~~~~~~
-
~~~~~~~~

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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2( 5 . 9) .‘~~~ ( ~ ) i t ’ )  = ( ~ ~4 I’o) v~ ( o )  ~ ~~~ ( e )  v ( c i )  + 4 i~ I y (t)dt
J (I

(~~t 4 1 1 3 n ) z~~(o) +

Ilenc e

( 5 . 1 0 )  
~
‘(O) < (I~~+?Fr3 )z (I)) + N g ( o ) .

!n t e g r . i t i n p  t h e  diff er ent ia l i i i e q m i a l  i t v  ( 5 . 1 0 )  u n d e r  the initi a l

con (lit i o n  7 ( 0)  = My(O) we a rrive at (~~. 7 ) .  The proof i s  comp lete.

We note that , wh en 13 = 0, Lemma 5.1 reduces to Lemma 4.1.

Lemma 5 . 2 .  Let  ~~, (~~, T h ( X , t ) and (x ,~~) ( X , t ’) he as in  Theorem 5 . 1 .

Then there arc constants A > 0 and v w i t h  t he  property that , for

any  o ~
. ~O , t 0 ]

~j ’ L ( I (X ,o),n(X,a) ;X)  
—

( 5 . 1 1 )  ft~~~~~a) - F1JX ,o)1 [t (\ ,o) - F.~ (X ,o)]

2 * _  —

3 C (F (X ,o ) , n (X ,o) ;X)  
—

+ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

[F 1~ (X,o) 
— l:.~ (X ,o) 1 [ri(X ,o) -

)~~L ( i(X , o) ,rI (X,o) ;X) 
—

+ 2 
— [n ( X , o) — n(X,o)1

an -

2A J ( I F ( X ,0) - F(x ,o) 1 2 + fn (X,a) - ~(X ,o)~
2}dX

—

- f ~x(~~~) - ,~)I
2d~.

— b

~~~~~, ~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~
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P r o o f .  We r ec ;i l I t h a t  (~~,~T) (X , t) re s i de s  in the strong e l lipticity

reg ion and t h a t  x - van i s h e s  on . In t he  case  where

n ( X , t )  — n ( X , t )  v a n i s h e s  i d e n t i c a l l y ,  ( 5 . 1 1 )  reduces  to th e  c l a s s i c a l

Cording inequality. In general , ( 5 . 1 1 )  is established by imitating

the proof of C o r d i n g ’ s i n equal i ty, as described , for examp le , in [17)

Proof of Theorem 5. 1 . On account of (2.9),

(S. 12) 1 (1 , rI;x) - I ( P ,~~;X) - 
~~

-
~~~~~~

_ T.~ ( ;X) (I~~ -P~~) — 0 (F,n;X) (n-n)

2 * _
~

_ 2 — —
3 C (F,n;X) ~~ C~ (F , r i ;X) 

—

- ~~~~~~ ~~~ 
(P~ 13 1 j 13) ~ aP.~~ n (F~ 1-F~1~) (n-~)

3 c ,ri;X) 
— 2 — 2 — 2

+ — 2 — (n-n) + o (ip-Fi + in-ni ).

Combining (5.11) with (5.12) we conclude tha t there is a positive

cons tan t ~ with the property that , when (5.2) is satisfi ed ,

t * * —

(5.13) J (P(X)C (F(X,a),n(X,o);X) - p(X)c (F(X,a),~i(X,o) ;X)

- I (F(X ,o), T~(X ,o);X) [F. (X ,a) - fT
1~ (X ,o)j

t
*

- p(X) 0 (F(X ,o),ii(X,c) ;x) [n(X ,a) - n(X ,o)] }dx

A f {I ~~~,o) - i~(X ,o ) I 2 
+ n(X,o) - ~ (X , o ) l 2 )dX

- ~ f Ix ( x ,o) - 

~ (X ,o) I 2d .

~~~~ ~~: 
- - 

~~~i
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F u r t h e r m o r e , up on  u s i n g  S ch w a r z  ‘ S n e q u a l  i ty and tile Po i n c a r ~ *

inequa l its ’ ,

(5.14) j x ( X , e) - 

~ (X ,n )I 2dX

= f x ( X , 0) - i(X , 0) + 
f

(v(X~ t) 
- ~ (X , t ) } d t I 2 dX

< 2c J P(X ,0) - rcx ,o)1 2dx

+ 2o j ; j l v ( X , t)  - V(x,t) I
2 d~ d t .

We now proceed as in the proof of Theorem 4.1. We fix

s C [0,t0] , we integrate (3.10) over .~~~~ [O ,o] , a LE 0 ,sl , and we

ap p l y the Gauss-Green theorem . We use the boundary conditions (5.3),

(5.13), (5.14) and t h e  observation that the rig ht-hand side of (3.10)

i s of quadratic order i n  (v-~~,F-r ,n-~~,b-E ,r-~~) thus arriving at

an estimate of the form (5.6) with

(5.15) y(t) I (v-~~,F-~~,n-Ti) ( .  , t)  I I  2
(_ ~~~)

(5.16) g(t) H (b-E , r-~~) ( .  , t)  I 2

An app lic ation of Lemma 5.1 yields (5.4) and comp1e~ es the p roof .

~~ ~~~~~~~~~~ - 
Th~ ~~~~~~~~~~~~ —
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